作为变频器的使用者,掌握和熟悉变频器的正确现场调试方法与技术要领,这对变频器正常运作,减少故障,延长使用寿命,至关重要。变频器学院这期为广大粉丝推出的特刊专题《如何快速调试变频器来驱动电机?》,接下来就跟小编一起走进工控小课堂吧。
调试变频器,可以遵循下列六大步骤来操作:
一、变频器系统功用考察和相关接线
在调试变频之前,必须认真仔细阅读所要调试变频器的使用说明书和相关资料信息,熟悉其使用环境和注意事项。尤其在变频器通电前,要仔细观察和检查变频器是否有明显故障迹象,如它的输入、输出端是否符合说明书要求。特别要注意是否有新的内容增加。
变频器基本接线:
要想弄清楚变频器如何接线,先要明白变频器是一种电机调速装置,它会输出不同的电压和频率来改变电机的速度,从这个作用而言,它是一个可变的交流电源而已,可以收到命令控制的大功率电源,而功率大的电源,本质都是一种变电技术,都需要供给大功率的输入电源,因此需要所谓的主回路电路;
而这个电源要输出什么样的电压和频率,是通过人或者人指挥的其他设备来控制的,这样需要控制回路电路。
从上图可以看出,变频器的结构是,先把工频电源,整流成直流,逆变成可变电压和频率的电源来带动电机,任何变频器都一样,只要接对主回路和控制回路就好了。
· 主回路就是输入输出而已;
变频器有单相和三相之分,单相变频器一般是单相220伏供电的,因为国内民用都使用这种单相电压,所以这种单相变频器也迎合而生,理论上接入电源可以广泛点,很多民用的小设备可以使用这类变频器和电机来完成调速。
上图上半部就是主回路接线,非常简单,输入有个空气开关断路器之类的器件,给变频器L1和N线供电,变频器输出UVW接电机的UVW端,这样主回路的接线就已经完成了,主回路接线,主要是线比较粗,线头一般都要压上线耳,这样和变频器的端子接触电阻小,保证导电性能良好。需要注意的是,单相变频器带动的都是三相220伏的电机,而不是单相220伏电机哦。
这是三相变频器的主回路接线图,因为工业用电都是三相380伏的,所以这种变频器是工业应用的主体变频器,主回路接线,也仅仅是比单相的多了一条线而已,输入端需要三相断路器,同样要注意保证接线电阻足够小,而且有些启动频繁的,需要外接制动电阻甚至还要外接制动单元,变频器的端子上有这些功能的,按照说明的方法对应接上电阻线就好,当然制动电阻要选对匹配的规格。
· 控制回路接线,需要根据功能来选择
变频器控制回路,不管单相还是三相变频器都大同小异,分为启动逻辑和转速信号给定两部分,启动逻辑是开关量,包括了停止逻辑,每款变频器上都有这类型的端子可以接上使用的,而且开关另外一边,不是共地就是共阳。
上图红色圈子是启停逻辑接法,左边蓝色是频率给定,一般是模拟量,通过外接一个电位器来抽头取样0-10伏电压给定,这样电位器调整阻值大小时候,变频器收到了一个连续可变的电压指令,对应会输出0-50HZ的频率,达到了调速的目的。有些还可以反过来给定的,下边的就是频率上升或者下降图。
而右边的绿色圈子,是通过开关I/O量给定不同速度段的频率值,三个端子一共有8种状态,去掉0速状态,就可以调出以下的7段速来,本质上和电位器调速并没有太多区别。
以上的接线方法,实际上是传统的I/O控制的接线方法,实际上现在还有网络给定的,比如通过485口,或者一些总线甚至RJ45这些来给定的,这种就一个插头,直接插上就好了。
还有一些是带编码器反馈的把变频器信号和电源正负接对就可以了,一些是带外部I/O连锁控制的,要看实际需要来接。
变频器接线完毕后通电前的检查主要包括:
A、确认电源供电的电压正确,输入供电回路中连接好断路器;
B、确认变频器接地、电源电缆、电动机电缆、控制电缆连接正确可靠;
C、确认变频器冷却通风通畅;确认接线完成后变频器的盖子盖好;
D、确定当前电动机处于空载状态(电动机与机械负载未连接)。
变频器通电后的检查主要包括:
A、闭合断路器,使变频器通电,检查变频器是否有异常响声、冒烟、异味等情况;
B、检查变频器操作显示面板有无故障报警信号提示,确定通电初始化状态正常。若有异常现象,应立刻断开供电电源。
二、参数设置
1.设置电动机参数及自动调谐
明确被控电动机的性能参数,也是调试前的必备工作。准确识读被控电动机的铭牌参数,这些参数是变频器设置过程中参数依据。如下图所示。
根据电动机铭牌参数,输入方法:
→按动变频器操作显面板,进入F1.00参数,设置为0(普通异步电机);→进入F1-01,设置电动机的额定功率为3.5kw。
→按动变频器操作显示面板,进入F1.02参数,设置电动机的额定电压为380V;
→按动变频器操作显示面板,进入F3.03参数,设置电动机额定电流为8A;
→按动变频器操作显示面板,进入F1.05参数,设置电动机额定转速为1400r/min;
→按动变频器操作显示面板,进入F1.09参数,设置电动机自动调谐允许;
→进入F1.37参数,设置电动机调设置电动机自动调谐允许。设置电动机调谐进行;
→调谐进行后,按RUN键,电动机开始旋转。→调谐结束后,电动机停正旋转;
→此时按面板上的ESC键→返回,自动调谐全过程完成。
2.设置变频器参数
正确设置变频器的运行控制参数,即在“F0”参数组下,设定控制方式、频率设定方式、频率设定、运行选择等功能信怎。待参数设置完成后,按变频器的“MENU/ESC”菜单键退出编程状态,返回停机状态。
→按动变频器显示面板,进入F0.02参数,设置变频器的控制方式为闭环矢量;
→按动显示面板,进入F0.03参数,设置变频器频率设定方式;
→这里有多种数字设定,根据自己的需要,一般选择“数字设定1”。→按面板显示,进入F0.04参数,设置变频器的频率设定;
→例如选择30HZ或者50HZ;
→按动面板显示,进入F0.05参数,设置运行命令选择方式;
→例如变频器键盘控制,即操作面板运行命令控制;
→按动面板显示,进入Fb.01参数,设置PG方向,例如:PG方向设为正向;
3.空载运行参数设置:
上面参数设置完成后,在电动机空载状态下,借助变频器的操作显示面板进行直接调试操作。
按RUN键,启动变频器运转→在运转中,按动上健或下键修改变频器当前设定频率;
→在运行中,按FWD/REV键,改变电动机运行方向;
→按ST0P键,电动机减速直到停机;
→断开断路器,整个空载运行结束。
此时,还可以通过变频器操作面板显示进行电动机点动运行设置:
→按动显示面板→进入F2.15参数,设置变频器的点动运行频率(例如10HZ);
→按动显示面板,进入F0.05参数,设置运行命令选择方式(例如→键盘命令,点动健在面板上的代号为J0G)
只要熟悉了变频器的功能代码和输入方式,对于千遍一律的变频器设置就可以得心应手了。
三、变频器无机空载运行调试
变频器无机(即不连接电动机)空载(即电动机不带负载)运行调试,下列三步是最基本的、亦是最重要的调试操作内容:
(1)把变频器的接地端子接地以及将其电源输入端子经过漏电保护开关接到电源上;
(2)察看变频器显示窗的出厂显示是否正常,若不正确,应复位,否则要求供应商退换;
(3) 熟悉变频器的操作键。
一般的变频器均有run(运行)、 stop(停止)、 prog(编程)、 data/enter(数据/确认)、up▲(增加)、down▼(减少)等6个键,不同变频器操作键的定义基 本相同。此外有的变频器还有monitor/display(监视)、reset(复位)、jog(寸动)、shift(移位)等功能键,对这些键要进行调试操作。
四、变频器带机空载运行调试
变频器带机(即接上电动机)空载(即电动机不带负载)调试,下列四步至关重要。
(1)设置电动机的功率、极对数,以及确定变频器的工作电流。
(2)设定变频器的最大输出频率与基底频率以及设置电动机转矩特性。
(3)压/频(v/f)工作方式的选择包括最高工作频率、基本工作频率(即基底频率)和转矩类型等项目。
最高频率是指变频器电动机系统可以运行的最高频率,由于变频器自身的最高工作频率可能比较高,当电动机容许的最高工作频率低于变频器的最高工作频率时,应按电动机及其负载的要求进行设定工作的频率。
基本工作频率是变频器对电动机进行恒功率控制和恒转矩控制的分界线,应按电动机的额定电压进行设定。
转矩类型指负载是恒转矩负载还是变转矩负载。用户根据变频器使用说明书中的v/f工作方式图和负载特点,选择其中的一种工作方式。通用变频器均备有多条v/f曲线供用户选择,使用时应根据负载性质选择合适的v/f曲线。如果是风机和泵类负载,要将变频器的转矩运行代码设定成变转矩和降转矩运行特性。
为了改善变频器启动时的低速性能,使电动机输出转矩能满足生产负载启动要求,要调整启动转矩。在三相异步电动机变频调速系统中,转距的控制比较复杂。在低频段,由于电阻和漏电抗的影响不容忽略,若仍保持v/f为常数,则磁通将减小,从而减小了电动机的输出转矩。因此在低频段要对电压进行适当补偿以提升转矩。一般变频器均由用户进行人工设定补偿。
(4)将变频器设置为自带键盘操作模式,分别按运行键、停止键,观察 电动机能否正常启、停。
(5)按照变频器使用说明书对其电子热继电器功能进行设定。
电子热继电器的门限值定义为电动机和变频器两者额定电流的比值,常用百分数表示。当变频器输出电流超过其容许电流时,过流保护设施将切断变频器的输出。因此,变频器电子热继电器的门限最大值不超过变频器的最大容许输出电流。变频器过载保护设置值可以修改。
五、变频器负载运行调试
变频器负载(即变频器接上电动机并且电动机带上负载)运行调试,下列五步必须进行。
(1) 手动操作变频器面板上的运行停止键,观察电动机运行停止过程及变频器的显示窗,看是否有异常现象。
(2)如果启/停电动机过程中变频器出现过流保护动作,则应重新设定加速/减速时间。
电动机在加速、减速时的加速度取决于加速转矩,而变频器在启/制动过程中的频率变化率由用户设定。若电动机转动惯量或负载变化按预先设定频率变化率升速或减速时,有可能出现加速转矩不够,从而造成电动机失速,即电动机转速与变频器输出频率不协调,从而造成过电流或过电压。
因此需要根据电动机转动惯量和负载合理设定加、减速时间,使变频器的频率变化率能与电动机转速变化率相协调。调试此项设定是否合理的方法是先按经验选定加、减速时间进行设定,若在启动过程中出现过流,则可适当延长加速时间;若在制动过程中出现过流,则适当延长减速时间。
(3)如果变频器在限定的时间内仍然出现过流保护动作,应改变启/停的运行曲线,如从直线改为s形、u形线或反s形、反u形线。当电动机负载惯性较大时,则应采用更长的启/停时间,并且根据其负载特性设定运行曲线类型。
(4)如果变频器还出现过流保护动作,则应尝试增加最大电流的保护值,但是不能取消保护,应留有至少10%~20%的保护余量。如果此动作依然发 生,则应更换较大一级功率的变频器。
(5) 如果变频器带动电动机在启动过程中达不到预设速度,可能有两种原因:
系统发生机电共振,可从电动机运转的声音进行判断。采用设定频率跳跃值(一般变频器能设定三级跳跃点)的方法,可以避开共振点。
v/f控制方式的变频器驱动三相异步电动机时,在某些频率段,电动机的电流、转速会发生振荡,严重时系统无法运行,甚至在加速过程中出现过电流保护,使得电动机不能正常启动,在电动机轻载或转动惯量较小时更为严重。
普通变频器均备有频率跨跳功能,用户可根据系统出现振荡的频率点,在v/f曲线上设定跨跳点及跨跳宽度。当电动机加速时可以自动跳过这些频率段,保证系统能够正常运行。
电动机的转矩输出能力不够,不同品牌的变频器出厂参数设定不同,在相同条件下负载能力不同,也可能因变频器控制方式不同,造成电动机的负载能力不同;或因系统的输出效率不同;造成负载能力会有所差异。对此种情况,可以增加转矩提升量的值。如果达不到,可用手动转矩提升功能,但不要设置过大,电动机这时的温升会增加。如果仍然不行,应改用新的控制方式。
六、变频器连接上位机的系统调试
在手动的基本设定调试完成后,如果系统中有上位机,将变频器的控制线直接与上位机控制线相连,并将变频器的操作模式改为端子控制。根据上位机 系统的需要,调定变频器接收频率信号端子的量程0~5v或0~10v,以及变频器对模拟频率信号采样的响应速度。
变频器控制方式的选择与试用
这里只论述变频器通常采用的两种典型控制方式,即磁通矢量控制方式和压/频(即v/f)控制方式。
(1)变频器磁通矢量控制方式
三相异步电动机与直流电动机理论上具有相同的转矩产生机理,从磁场与同其垂直的电流相乘积等于转矩这一原理出发,将供给电动机的定子电流分为 两个部分,即产生磁场的磁场电流与产生力矩的转矩电流。
矢量控制方式就是将定子电流分解成磁场电流和转矩电流,分别进行控制,同时将二者合成的电流供给电动机,因此得到与直流电动机相同的控制特 性。
采用这种控制方式,可以提供足够的启动转矩和充足的低速转矩,特别适用于负荷变化较大的场合。但其运行条件有下列四方面的局限性:
a.要求变频器容量的余量一般要比电动机容量大出一个等级;
b.对电动机的级数要求较多;
c.只能用于单机运行;
d.电动机电源线的长度不能过长。
当上述条件不能满足时,就会带来转矩不足或电动机转速波动等一系列问题,所以除非是负荷变化较大的场合,否则推荐使用v/f控制方式。
(2)变频器的压/频(v/f)控制方式
所谓压/频(v/f),即电压/频率,就是指变频器在控制可变范围内的输出电压和输出频率的比率要保持协调。基底频率是电动机恒转矩特性运转和恒功率 特性运转的分界点,因此可根据负载对转矩、功率大小的要求来设定压/频控制方式及特性,从而达到所需控制目的。
变频器功能参数设置与调试
实际应用中,没必要对每一参数都进行设置和调试,多数只要采用出厂设定值即可。但有些参数由于和实际使用情况有很大关系,且有的还相互关联, 因此要根据实际进行设定和调试。
1.加减速时间
加速时间就是输出频率从0上升到最大频率所需时间,减速时间是指从最大频率下降到0所需时间。通常用频率设定信号上升、下降来确定加减速时 间。在电动机加速时须限制频率设定的上升率以防止过电流,减速时则限制下降率以防止过电压。
加速时间设定要求:将加速电流限制在变频器过电流容量以下,不使过流失速而引起变频器跳闸;减速时间设定要点是:防止平滑电路电压过大,不 使再生过压失速而使变频器跳闸。
加减速时间可根据负载计算出来,但在调试中常采取按负载和经验先设定较长加减速时间,通过起、停电动机观察有无过电流、过电压报警;然后将 加减速设定时间逐渐缩短,以运转中不发生报警为原则,重复操作几次,便可确定出最佳加减速时间。
2.转矩提升
又叫转矩补偿,是为补偿因电动机定子绕组电阻所引起的低速时转矩降低,而把低频率范围f/V增大的方法。设定为自动时,可使加速时的电压自动提 升以补偿起动转矩,使电动机加速顺利进行。
如采用手动补偿时,根据负载特性,尤其是负载的起动特性,通过试验可选出较佳曲线。对于变转矩负载,如选择不当会出现低速时的输出电压过 高,而浪费电能的现象,甚至还会出现电动机带负载起动时电流大,而转速上不去的现象。
3.电子热过载保护
本功能为保护电动机过热而设置,它是变频器内CPU根据运转电流值和频率计算出电动机的温升,从而进行过热保护。本功能只适用于“一拖一”场合,而在“一拖多”时,则应在各台电动机上加装热继电器。
电子热保护设定值(%)=[电动机额定电流(A)/变频器额定输出电流(A)]×100%。
4.频率限制
即变频器输出频率的上、下限幅值。频率限制是为防止误操作或外接频率设定信号源出故障,而引起输出频率的过高或过低,以防损坏设备的一种保护功能。
在应用中按实际情况设定即可。此功能还可作限速使用,如有的皮带输送机,由于输送物料不太多,为减少机械和皮带的磨损,可采用变频器驱动,并将变频器上限频率设定为某一频率值,这样就可使皮带输送机运行在一个固定、较低的工作速度上。
5.偏置频率
有的又叫偏差频率或频率偏差设定。其用途是当频率由外部模拟信号(电压或电流)进行设定时,可用此功能调整频率设定信号最低时输出频率的高低。有的变频器当频率设定信号为0%时,偏差值可作用在0~fmax范围内;
有的变频器还可对偏置极性进行设定。如在调试中当频率设定信号为0%时,变频器输出频率不为0Hz,而为xHz,则此时将偏置频率设定为负的xHz即可使变频器输出频率为0Hz。
6.频率设定信号增益
此功能仅在用外部模拟信号设定频率时才有效。它是用来弥补外部设定信号电压与变频器内电压(+10v)的不一致问题;同时方便模拟设定信号电压的选择,设定时,当模拟输入信号为最大时(如10v、5v或20mA),求出可输出f/V图形的频率百分数并以此为参数进行设定即可;
如外部设定信号为0~5v时,若变频器输出频率为0~50Hz,则将增益信号设定为200%即可。
7.转矩限制
可分为驱动转矩限制和制动转矩限制两种。它是根据变频器输出电压和电流值,经CPU进行转矩计算,其可对加减速和恒速运行时的冲击负载恢复特性有显著改善。转矩限制功能可实现自动加速和减速控制。假设加减速时间小于负载惯量时间时,也能保证电动机按照转矩设定值自动加速和减速。
驱动转矩功能提供了强大的起动转矩,在稳态运转时,转矩功能将控制电动机转差,而将电动机转矩限制在最大设定值内,当负载转矩突然增大时,甚至在加速时间设定过短时,也不会引起变频器跳闸。
在加速时间设定过短时,电动机转矩也不会超过最大设定值。驱动转矩大对起动有利,以设置为80~100%较妥。
制动转矩设定数值越小,其制动力越大,适合急加减速的场合,如制动转矩设定数值设置过大会出现过压报警现象。如制动转矩设定为0%,可使加到主电容器的再生总量接近于0,从而使电动机在减速时,不使用制动电阻也能减速至停转而不会跳闸。
但在有的负载上,如制动转矩设定为0%时,减速时会出现短暂空转现象,造成变频器反复起动,电流大幅度波动,严重时会使变频器跳闸,应引起注意。
8.加减速模式选择
又叫加减速曲线选择。一般变频器有线性、非线性和S三种曲线,通常大多选择线性曲线;非线性曲线适用于变转矩负载,如风机等;S曲线适用于恒转矩负载,其加减速变化较为缓慢。设定时可根据负载转矩特性,选择相应曲线。
但也有例外,笔者在调试一台锅炉引风机的变频器时,先将加减速曲线选择非线性曲线,一起动运转变频器就跳闸,调整改变许多参数无效果,后改为S曲线后就正常了。
究其原因是:起动前引风机由于烟道烟气流动而自行转动,且反转而成为负向负载,这样选取了S曲线,使刚起动时的频率上升速度较慢,从而避免了变频器跳闸的发生,当然这是针对没有起动直流制动功能的变频器所采用的方法。
9.转矩矢量控制
矢量控制是基于理论上认为:异步电动机与直流电动机具有相同的转矩产生机理。矢量控制方式就是将定子电流分解成规定的磁场电流和转矩电流,分别进行控制,同时将两者合成后的定子电流输出给电动机。
因此,从原理上可得到与直流电动机相同的控制性能。采用转矩矢量控制功能,电动机在各种运行条件下都能输出最大转矩,尤其是电动机在低速运行区域。
现在的变频器几乎都采用无反馈矢量控制,由于变频器能根据负载电流大小和相位进行转差补偿,使电动机具有很硬的力学特性,对于多数场合已能满足要求,不需在变频器的外部设置速度反馈电路。这一功能的设定,可根据实际情况在有效和无效中选择一项即可。
与之有关的功能是转差补偿控制,其作用是为补偿由负载波动而引起的速度偏差,可加上对应于负载电流的转差频率。这一功能主要用于定位控制。
10.节能控制
风机、水泵都属于减转矩负载,即随着转速的下降,负载转矩与转速的平方成比例减小,而具有节能控制功能的变频器设计有专用V/f模式,这种模式可改善电动机和变频器的效率,其可根据负载电流自动降低变频器输出电压,从而达到节能目的,可根据具体情况设置为有效或无效。
要说明的是,第9和第10项这两个参数是很先进的,但有一些用户在设备改造中,根本无法启用这两个参数,即启用后变频器跳闸频繁,停用后一切正常。
究其原因有:
(1) 原用电动机参数与变频器要求配用的电动机参数相差太大。
(2) 对设定参数功能了解不够,如节能控制功能只能用于V/f控制方式中,不能用于矢量控制方式中。
(3)启用了矢量控制方式,但没有进行电动机参数的手动设定和自动读取工作,或读取方法不当。
变频器调试时的注意事项:
1、注意输出频率范围的设定
变频器输出频率范围的设定,亦就是变频器输出频率的上、下限位值,其设置的目的是为了防止误操作或外界频率设定信号源出故障而引起输出频率过高或过低,以防止损坏机械设备。此设定一般以被控电动机的最大转速或经验值设定。
2、注意加速时间的设定
加速时间即输出频率从零上升到最大频率时所需要的时间,减速时间是指从最大频率下降到零所需要的时间。常用频率设定信号的上升、下降来确定加减速时间。在电动机加速时限制频率给定的上升率以防止过电流,减速时设定下降率防止过电压。
加速时间设定时还应注意将加速电流限制在变频器过电流容量以下,防止变频器过电流跳闸;减速时间设定时还应注意防止平滑电路的电压过大,不使变频器因再生过电压失速而跳闸。
加减速时间可根据负载计算,但是比较繁琐,其简易方法为:根据负载大小,凭经验先设定较长的加减速时间,然后通过运行观察有否过流、过压报警,逐渐缩短设定的时间,以运行中不发出报警为原则,重复操作,确定最佳值。
3、注意电动机保护功能的设定
在实际工程中,应将电动机的额定电流作为设定值,此值为电动机过载的基准值。但应注意:用一台变频器控制多台电动机时,此功能设置无效。
4、注意igbt关联快速熔断器的选定
igbt是变频器中最重要的器件,它是大功率场效应复合管,生产厂家对它采用半导体快速熔断器进行保护,其熔断时间小于igbt的击穿时间。如果它的性能改变,就会烧毁igbt,因此对快速熔断器型号的选定至关重要。
5、注意故障自动复位次数及复位时间的设定
这项设定很重要,在实际运行中,难免会有偶然出现的一些故障,但瞬间就能自动克服,可保障变频器平稳工作而无需寻找故障点。
这期特刊关于变频器如何接线,现场调试具体步骤、技术方法、参数设置以及注意事项进行了浅略的论述,虽然实际变频器品种繁多,可能遇到的调试问题亦举不胜举。但是变频器的调试原理和相关技术要点是大同小异的,相信大家了解这方面的精髓后可以做到触类旁通。